AN ADDENDUM TO "QUADRATIC FORMS OVER POLYNOMIAL EXTENSIONS OF RINGS OF DIMENSION ONE"

Journal of Pure and Applied Algebra 24 (1983) 293-302

Raman PARIMALA and Parvin SINCLAIR

School of Mathematics, Tata Institute of Fundamental Research, Bombay 400 005, India

Communicated by H. Bass Received 8 November 1982

In Theorem 3.3 the condition that disc q is extended from R is redundant in view of the following:

Proposition. Let R be a reduced commutative Noetherian ring of dimension one in which 2 is invertible and which has finite normalisation. Then the inclusion $R \hookrightarrow R[X_1, ..., X_n]$ induces an isomorphism Disc $R \xrightarrow{\sim} Disc R[X_1, ..., X_n]$.

To prove the proposition we need the following:

Lemma. Let R be any commutative ring in which 2 is a non-zero divisor; then $\mu_2(R) = \mu_2(R[X])$.

Proof. Let $f = a_0 + a_1 X + \dots + a_r X' \in \mu_2(R[X])$. Then the equation

 $(a_0 + a_1 X + \dots + a_r X^r)^2 = 1$

gives $a_0^2 = 1$ and hence a_0 is in $\mu_2(R)$. Let, if possible, i > 0 be the least integer such that $a_i \neq 0$. Then $2a_0a_i = 0$ which implies that $a_i = 0$, a contradiction. Thus $f = a_0$.

Proof of the proposition. Let \overline{R} be the integral closure of R in its total quotient ring and c be the conductor of R in \overline{R} . We then have the following commutative diagram of exact sequences:

0022-4049/83/\$03.00 © 1983 North-Holland

$$\mu_{2}(\bar{R}) \oplus \mu_{2}(R/_{C}) \rightarrow \mu_{2}(\bar{R}/_{C}) \rightarrow \text{Disc } R \rightarrow \text{Disc } \bar{R} \oplus \text{Disc } R/_{C} \rightarrow \text{Disc } \bar{R}/_{C}$$

$$\downarrow i_{1} \qquad \qquad \downarrow i_{2} \qquad \qquad \downarrow i_{3} \qquad \qquad \downarrow i_{4} \qquad \qquad \downarrow i_{5}$$

$$\mu_{2}(\bar{R}[X]) \oplus \mu_{2}(R/_{C}[X]) \rightarrow \mu_{2}(R/_{C}[X]) \rightarrow \text{Disc } R[X] \rightarrow \text{Disc } \bar{R}[X] \oplus \text{Disc } R/_{C}[X] \rightarrow \text{Disc } \bar{R}/_{C}[X]$$

where the vertical maps are induced by inclusions and X denotes the tuple $(X_1, ..., X_n)$. Since \overline{R} is a product of Dedekind domains and dim $R/_C = \dim \overline{R}/_C = 0$, i_1, i_2, i_4 and i_5 are isomorphisms. Thus, by the five-lemma i_3 is an isomorphism.

In view of this, Corollary 3.5 should read as $W(R[X]) \xrightarrow{\sim} W(R)$.