AN ADDENDUM TO "QUADRATIC FORMS OVER POLYNOMIAL EXTENSIONS OF RINGS OF DIMENSICN ONE"'

Journal of Pure and Applied Algebra 24 (1983) 293-302
Raman PARIMALA and Parvin SINCLAIR
School of Mathematics, Tata Institute of Fundamental Research, Bombay 400 005, India

Communicated by H. Bass
Received 8 November 1982

In Theorem 3.3 the condition that disc q is extended from R is redundant in view of the following:

Proposition. Let R be a reduced commutative Noetherian ring of dimension one in which 2 is invertible and which has finite normalisation. Then the inclusion $R \hookrightarrow R\left[X_{1}, \ldots, X_{n}\right]$ induces an isomorphism $\operatorname{Disc} R \leadsto \operatorname{Disc} R\left[X_{1}, \ldots, X_{n}\right]$.

To prove the proposition we need the following:

Lemma. Let R be any commutative ring in which 2 is a non-zero divisor; then $\mu_{2}(R)=\mu_{2}(R[X])$.

Proof. Let $f=a_{0}+a_{1} X+\cdots+a_{r} X^{r} \in \mu_{2}(R[X])$. Then the equation

$$
\left(a_{0}+a_{1} X+\cdots+a_{r} X^{r}\right)^{2}=1
$$

gives $a_{0}^{2}=1$ and hence a_{0} is in $\mu_{2}(R)$. Let, if possible, $i>0$ be the least integer such that $a_{i} \neq 0$. Then $2 a_{0} a_{i}=0$ which implies that $a_{i}=0$, a contradiction. Thus $f=a_{0}$.

Proof of the proposition. Let \bar{R} be the integral closure of R in its total quotient ring and c be the conductor of R in \bar{R}. We then have the following commutative diagram of exact sequences:

where the vertical maps are induced by inclusions and X denotes the tuple $\left(X_{1}, \ldots, X_{n}\right)$. Since \bar{R} is a product of Dedekind domains and $\operatorname{dim} R / c=\operatorname{dim} \bar{R} / c=$ $0, i_{1}, i_{2}, i_{4}$ and i_{5} are isomorphisms. Thus, by the five-lemma i_{3} is an isomorphism.

In view of this, Corollary 3.5 should read as $W(R[X]) \rightrightarrows W(R)$.

